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Approximation of set-valued functions is introduced and discussed under a
convexity assumption. In particular, a theorem on positive linear operators
is given.

1. INTRODUCTION

Let !K denote the collection of nonempty, compact subsets of Iffi<l. With the
introduction of the Hausdorff metric, given by

h(K1 ,K2) = inf{E > °I K1 ~ K 2 + EB, K 2 ~ K1 I EB}, (1.1)

IK can be regarded as a complete, separable, and locally compact metric space.
Here B is the closed unit ball in Iffid, scalar multiplication of sets is defined
in the usual way, and"+" denotes (Minkowski) addition of sets.

A set-valued function F is a map from [0, 1] into IK. Such maps (and more
general versions) arise in a variety of contexts, including optimal control
theory, mathematical economics, and probability theory. Analytical investi
gations have followed several lines, including the construction of a differential
calculus (see, for instance, Artstein [2], Aumann [4], and Matheron [8]) and
the investigation of selections, namely vector-valued functions f: [0, 1] ~ Iffi<l
such f(t) E F(t) for each t (Wagner [18] provides an extensive survey of this
area).

Our purpose here is to present some initial investigations into the possi
bilities of an approximation theory for set-valued functions. We take our
lead from traditional notions and begin by posing the question, is it possible
to approximate a given F by a "simpler" one? More concretely, we may look
for linear approximants of the form

n

L rp;K; = rpoKo + '" + rpnKn ,
;~o

(1.2)

'" This work was done at the Mathematics Research Center (Madison) and supported
by the United States Army under Contract DAAG29-75-C-0024.

301
0021-9045/79/080301-16$02.00/0

Copyright © 1979 by Academic Press, Inc.
All rights of reproduction in any form reserved.



302 RICH'ARD A. VITALE

where the Kj are fixed elements of IK and the ({Jj are scalar valued maps defined
on (0, I]. A new ingredient in this traditional formulation is that (1.2) must be
treated with some care in combining terms. Note that, although {OJ is the
identity for addition of sets, i.e.,

K+ {OJ = K,

generally no additive inverse exists (one can easily verify that K + KI = {OJ
cannot be solved for KI unless K reduces to a point). Moreover, the distri
butive law

exK + f3K = (ex + (3)K

generally fails to hold (consider, for instance, the case when K = {O, I} C 1R1).

It is true that a restricted version holds for convex K, namely

exK + f3K = (ex + (3)K for iX, f3 ;;:, O. (1.3)

This suggests that the class of convex-valued F may be an appropriate place
in which to begin considering approximation, and we will devote our
discussion to this case.

An outline of the development is as follows. In Section 2, we present
notation and generally well-known preliminaries. We take up Bernstein
approximation in Section 3 to show the possibility of uniform approximation
by linear approximants of polynomial type. We then make a brief excursion
into the nonconvex case. Section 4 presents our main result concerning
convergence of positive, linear operators. In Section 5 we return to Bernstein
approximation to examine some of its other features.

2. IKe

We denote by IKe the collection of elements of IK which are also convex.
We summarize some properties of IKe which can be found in standard
references (see, for instance, Eggleston (7], Rockafellar [10], and Valentine
[14]).

IKe is closed under addition and scalar multiplication of sets and enjoys the
distributive property (1.3). IKe inherits its metric from IK as a closed, separable
and locally compact subspace. Given an element K, we may form its convex
hull con K which is in IKe . The map K ->- con K is continuous and satisfies
additionally

for ex, f3 ;;:, 0.
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To each K E IKe is associated its support function, given by
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s(p, K) = max{p . k IkE K}, lip II = 1. (2.1)

One may consider the support function to give a convenient parameterization
of the family of supporting hyperplanes to a set. A set K E IKe and a point
not in K can always be separated by some hyperplane, and this leads to the
useful equivalence

and consequent uniqueness of support functions

Vp (2.2)

As a function of p, s(p, K) is continuous; indeed the Schwarz inequality,
together with (2.1), yields the uniform bound IS(P2' K) - S(Pl' K)I ~
II P2 - PI 1I11 K II· Here we have used the symbol II K II to denote the norm of K
which is equal to max{11 k II IkE K} and, equivalently, d({O}, K).

Evidently we may use the map K 1--+ s(', K) to embed IKe in the Banach
space Bd of continuous functions defined on the surface of the unit IRd ball.
Important structure is preserved under this mapping:

s(', aX) = cxs(', K), ex ~ 0, (2.3)

s(', K1 + K 2) = s(', K1) + s(', KJ, (2.4)

h(KI ,K2) = II SI - s211 (uniform norm), (2.5)

(II KII = II s(', K)II).
Let us indicate briefly how (2.5) comes about: The support function of B is

identically 1 so that (2.3) and (2.4) imply s(p, K 2 + eB) = s(p, K 2) + e.
Together with (2.2) this yields K 1 ~ K 2 + eB iff

for allp.

The analogous expression holds iff K2 \: K1 + eB. For both inclusions to
hold, we must have

for all p. (2.6)

The infimum of all e > 0 satisfying (2.6) is at once h(KI , K2) and II SI - S2 II
(see (1.1)). Taking in particular K2 = {O} yields II KII = II s(', K)II.

qlKel and qlKcl will denote the spaces of continuous maps from [0, 11
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into IK and IKe , respectively. Given a map FE qlK] we denote the norm of
Fby

H(F) = sup{11 F(t)111 t E [0, In

and define the related metric by

H(F, G) = sup{h(F(t), G(t)) I t E [0, In.

3. BERNSTEIN ApPROXIMATION

Given a set-valued function F, we define its nth Bernstein approximant
to be

n

BnCF; t) = L bjn(t)FUfn),
j~O

It is straightforward to show that this map necessarily lies in qll{] and,
indeed, in qlKe] if F E iC[lKe].

THEOREM 1. Let F E iC[ll{c]. Then, as n ~ 00, BnCF; ) converges uniformly
to F (i.e., H(F, Bn(F; )) ~ 0).

Proof We use the Banach space embedding. FE iC[ll{cl is equivalent to
the continuity ofthe map from [0, IJ into IEB d given by t 1-+ s(, F(t». Likewise,
a Bernstein approximant ofFcorresponds to the map t 1-+ L;~bjnCt)s(·,FUln).
Hence, it is enough to show the uniform convergence (in IEB d ) of the latter
maps to t 1-+ s(, F(t). This follows directly from classical arguments (see,
for example, Davis [5] transposed to a Banach space setting). I

In Section 4, we shall view this result from a more general perspective.
For now, let us turn to the case when FE iC[1K] does not necessarily have
convex values. Of course, this does not preclude forming Bn(F; ) and, indeed,
as we shall see, Bernstein approximation asymptotically "convexities" F.

Let us digress for a moment to consider a simple example. If
K = {O, l} C IRl, then

In 1 1 12 I- L K = - [K + K + ... + K] = 0, - , - '00" I
nj~O n~ n n

and hence h(Iln L:~o K, con K = [0, 1]) -+ °as n -+ 00. This "filling in" of
values is typical of what happens when nonconvex sets are summed. The
following result quantifies this behavior.
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PROPOSITION (Shapley-Folkman; see Arrow and Hahn [1, p. 396]). Let

K j E IK, j = 0, 1,... , n, be such that II K j II ~ M. Then

(3.1)

We use this result to investigate the nonconvex case.

THEOREM 1. Let F E iC[1K]. Then in any subinterval [E, 1 - E], °< E < t,
BiF; ) converges uniformly to con F (here (con F)(t) con F(t), t E [0, 1]).

Proof With

n

Bn(F; t) = I bjn(t) F(jjn),
j~O

we identify Kj = bjn(t)F(jjn) in (3.1). Now

II Kj II ~ II F(jjn)111 bjn(t)I
~ H(F) sup{bjit) I E ~ t ~ 1 - E, j = 0, 1,... , n}.

The indicated supremum can be shown to be O(n-1f2), so that by the
proposition

h(BiF; t), Bn(con F; t)) ~ H(F) O(n-1 / 2) d1 /2•

Theorem 1 applied to Bicon F; ) and the triangle inequality yield the
assertion. I

We remark that the result cannot be extended to the full interval since at
each endpoint, t = 0, 1, Bn(F; t) = F(t) independent of n. Moreover, the
O(n-1/2) bound breaks down at the endpoints.

The convexification ofFby Bernstein approximation is undoubtedly related
to theories of integration of set-valued functions, which invariably yield
integrals with convex values. It would be of interest to make this statement
more precise via a general investigation of the behavior of linear operators
on set-valued functions. We shall not consider this problem here but instead
present another example which shows the difficulty of formulating approxi
mation methods in the nonconvex case.

Let F(t) = {O, I} (a constant set-valued function) be approximated by the
piecewise linear scheme

Fn(t) = ([nt] + 1 - nt) F ([~]) + (nt - [nt]) F ([nt]n+ I), 0 ~ t < 1,
(3.2)= F(I), t = 1.
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Here Fn(O) = Fn(l) == {O, I}, whereas the sequence

Fit) = {O, nt - [nt], [nt] + 1 - nt, I}

even fails to converge for any t E (0, I).

4. A CONVERGENCE RESULT

Using (2.2) and the positivity of Bernstein approximation of real-valued
functions, we see that for F, G E ([lKeJ

F kG (that is, F(t) k G(t), "It) ::}- Bn(F; ) k Bn(G; ) "In.

As in the real case, this suggests that a wider class of approximation methods
may possess similar convergence properties. Let us agree to call a map
T: ([lKeJ -4- ([lKeJ lKe·linear if T(rxF + f3G) = rxTF + f3TG, Vex, f3 ~ 0
and "IF, G E iC[lKeJ, and IKe-positive if F k G ~ TF k TG, "IF, G E iC[lKeJ
(note the restriction IX, f3 ~ 0, which, as noted above, is appropriate for
convex sets). We then have the following result for such maps.

THEOREM 2. Let {Tn} be a sequence of IKe-linear, lKe·positive maps. In order
that TnF -- Ffor each FE iC[lKeJ, it is necessary and sufficient that

(i) TnF(i) -- F(i), i = 0, 1,2 where FUl(t) = tiB and

(ii) sup{H(TnF,F) IF(t) = K, II KII = I} -4- O.

Let us remark briefly on the hypotheses of the theorem before proceeding.
Condition (i) is reminiscent of the vector-valued formulation and is perhaps
even more striking here in that only a fixed shape (i.e., B, the closed unit ball)
is involved. Condition (ii) asserts that the Tn behave uniformly well when
applied to "constants" (including the case F = FlO) from (i».

We first show necessity of the conditions: (i) is obvious. As for (ii), suppose
the contrary. Then there is an € > 0 and a sequence of Kn . such that
H(Tn;Kn; ,Kn) ~ € (here we have abused notation slightly to l~t K..; ~tand
for Fn where Fn (t) =Kn ). Local compactness of IKe and the umform

; ; ;
normalization" K.. " = 1 assure the existence of a convergent subsequence;
of the Kn • Without loss of generality, suppose that K.. -- Ko . Then by the

;

triangle inequality,
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Now E" = H(Kro , K,,) -+- O. Moreover, the twin inclusions

K" C Koo + E"B,

K oo ~ K" + E"B

together with the properties of T" imply

and
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so that H(T"K", T"Koo) ~ E"H(T"B) -+- O. Hence lim H(T"Koo , Koo) ? E,

but this violates our assumption.
The proof of sufficiency is more involved and will require some preparation.

We begin by formulating a quantitative result for families of real-valued
functions. This will then be adapted to our needs by invoking the Banach
space embedding.

Let P be an indexing set and let E denote the collection of all a = <ap),
pEP. Here we have denoted by <ap) a bounded equicontinuous family of
real-valued functions defined on [0, 1]. That is, given a = <ap), each
a p E qo, 1) and

(i) 3M" such that supp 11 a p II :;( M" < 00, and

(ii) the modulus of continuity w,,(8) = sUPlt-xl<:a sUPI> I al>(t) - a,p{x)I
satisfies w,,(O+) = O.

E is a normed linear space under the definitions

aah) + f3a(2) = <aa~) + f3a~2»

and

II a II = sup sup I ap(t)!.
t p

Moreover, we can define a partial ordering by

Vp E P, Vt E [0, 1].

Now let us consider a subspace Eo C E and a map L: Eo -+- E. We say that
L is linear if L(aa(l) + f3a(21) = aLa(ll + f3La(21 and positive if am -< a(21 =
La(l) -< La(21.

For convenience, we call Eofull if the following conditions hold

(i) For i = 0, 1,2, ia E Eo, where ial>(t) = t i Vp E P, Vt E [0, 1] (note
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that, since Eo is a subspace, this implies that (x]o" E Eo, where (x]O",p(t) =
(t - X)2 Vp E P, Vt E [0, IJ, x E [0, 1] fixed).

(ii) If a = <ap) E Eo, then for each fixed x E [0, 1], (x)G E Eo, where
(",)Git) = ap(x) Vp E P, Vt E [0, IJ, (loosely, Eo must contain enough
constants).

Finally, we define

y(a, L) = sup sup I[L wa]p(t) - ap(t)I.
t p

We are now prepared to state a uniform bound.

(4.1)

PROPOSITION. Let Eo be full and let L: Eo - E be a positive, linear map.
Then for each a E Eo

II a - La II :(; wa(p,)[JI Loa II + 1] + y(a, L),

where

fL2 = sup sup I[L r",w]P{x)l.
IX p

Proof We follow an argument of Shisha and Mond [13), who have
developed a similar quantitative estimate in the case where P has a single
element.

Fix a = <ap) E Eo. Then, for each pEP and 0 > 0,

Consider one of the two associated inequalities, for example,

Regarding x as fixed, we see that this is equivalent to

and hence
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The opposite ordering is similar. We take pth components evaluated at x and
combine the two resulting inequalities to get

By assumption,

I[L (",w]ix) - Up(x) [ ,s;; y(u, L)

and two applications of the triangle inequality yield

Taking sup", supp on each side yields

II Lu - u II ,s;; wa(o) [II L OU II + ~2 fL2] + y(u, L).

If p. > 0, we take 0 = fL and are done. If fL = 0, then a limiting argument
(see [13]) similarly yields the assertion. I

COROLLARY. Let Eo be full and, for each n = 1,2,... , let Ln be a positive,
linear map taking Eo into E. If Ln iU -+ iU for i = 0, 1, 2, then, for each
u E Eo, y(u, Ln) -+ °implies Lnu -+ u.

Proof In view of the proposition, we only have to show that fLn2 =
sup", supp I[Ln [",W]p(x) [ -+ 0. Note that each component of [;rJU is
t 2 - 2xt -+- x2 (here t is the free variable) or equivalently

We apply Ln , take pth components, and evaluate at x:

Adding and subtracting 2x2 appropriately on the right and taking absolute
values yields the bound

I[Ln [",]u]p(x) I ~ I[Ln 2U)P(X) - x2 I + 2 I[Ln lU]P(X) - X I
+ I[Ln ou]ix) - 1 [. (4.2)
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Operating with sup", sup~ on each side of (4.2) then gives

and, by assumption, each of the three terms On the right tends to zero. I
We now adapt these considerations to the proof ofsufficiency in Theorem 3.

Recalling the identification between a set K E IKe and its support function
s(p, K), we see that an FE qlKeJ can similarly be identified with its family of
support functions

F"-+5(F) = <s(p,FO>;

where the indexing set is P = {p III p II = I}. Now

sup I s(p, F(t» 1 = II F(/)II ~ H(F) < 00
1>

and

sup sup I s(p, F(t» - s(p, F(x»j = WF(I),
It-xl(S 1>

where WF is the modulus of continuity ofF defined in the obvious way. Hence
s(F) E 1:. In fact, the collection of all s(F) form a positive, convex cone C in 1:
by virtue of the identification

exF + f3G ~ cxs(F) + f3s(G), ex, f3 ~ o.

A IKe-linear operator T: qIKc1 - qlKeJ induces a natural map L: C - C
via

Ls(F) = s(TF)

which obviously satisfies

L[cxs(F) + f3s(G)J = exLs(F) + f3Ls(G), ex, f3 ;;:, O.

In order to apply the proposition and corollary, we need to extend the domain
of L to a subspace of 1:. Accordingly, let 1:0 be the span of C (i.e., all finite
linear combinations of the form 2: exis(F;» and define, for any s(F),

L[-s(F)] = -Ls(F) (= -s(TF».

With this done, it is straightforward to verify that L: 1:0 - 1: is linear.
Moreover, since FC G -= s(F) < s(G), it follows directly that if T is Il{c

positive, then L is positive.
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(4.4)

Next we show that L o is full. Obviously, plo +--+ S(F(il) = i(] E :Eo ,
i = 0, 1,2. Further, (xW is of the form (xWp(t) = L: (XiS(P, Fi(x». But each
s(-, Fi(x», regarded as a function of t, corresponds to a constant set-valued
function F(t) = Fi(x). Hence each (xW E Lo •

Note also that, since for any F, G E C[lKe], H(F, G) = II s(F) - s(G)II, we
have TnFli) -->- Fli) =? Ln i(] -->- ia, i = 0, 1,2.

It remains to show that y -->- o. If (] = L: (Xis(Fi), then we have (see (4.1»

so that it is sufficient to consider (] = s(F). We have

y(s(F), Ln) = sup sup I[Ln<s(p,F(t» . oUp ) ]p(t) - s(p,F(t)I. (4.3)
t p

Let us regard t as fixed and consider the constant set-valued function
Fb) === F(t), 0 :(: x :(: 1. Then

H(TnFt , Ft) = II Ln<s(p, F(t» . o(]p) - <s(p, F(t» . o(]p)11

= sup sup J[Ln<s(p, F(t» . o(]p)lrlx) - s(p, F(t»I.
x p

Using (4.3) and (4.4), we see that

y(s(F), Ln) :(: sup H(TnFt , Ft).
t

By the second assumption of Theorem 3 and the bound II F(t)11 :(: H(F) < 00,

the right-hand side tends to zero. This completes the proof of the theorem.
The convergence of Bernstein approximation is easily established in this

context. IKe-linearity and -positivity obviously hold. Moreover, for i = 0, 1,2,
Bn(F(i); t) = Bn(t i ; t) . B which establishes convergence for the F(i). Finally,
given any constant F(t) == K, RiF; t) = F(t) so that the derived y in each
case is zero.

It is equally straightforward to establish convergence of the piecewise
linear scheme (3.2).

5. ASPECTS OF BERNSTEIN ApPROXIMATION

In this section we discuss some features of Bernstein approximation which
complement the uniform convergence result. Some have been alluded to
before and are true for similar approximation schemes.

We begin with some properties which follow directly from the support
function embedding and properties of Bernstein approximation in the real
valued case.
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PROPOSITION. (i) K1 CF(t) C K2, "It => K1 C B..(F; t) C K2, "It. In parti
cular, nt F(t) ~ Bn(F; t) C con[Ut F(t)] "It.

(ii) F(s) C (:2) F(t) "Is ~ t => Bn(F; s) C (:2) Bn(F; t) "Is ~ t.

(iii) F ( sit ) ~ (:2) ~ [F(s) + F(t)] "Is, t

=> Bn (F; sit) ~ (J) ~ [Bn(F; s) + Bn(F; t)] "Is, t.

Property (i) is, of course, a special instance of the positivity property. As
we have seen, this is a natural extension of the real-valued case. One might,
however, try to argue another type of extension. If f(t) > get) "It then the
Bernstein approximants of these functions share the same ordering. Alter
natively, one could say that nonintersection of graphs is preserved. Accord
ingly, in the set-valued case, we might ask whether nonintersection-F(t) n
G(t) = 0 "It-is maintained for approximants. The following example,
however, shows that this is not generally the case. In the complex plane. let
F(t) = {e27Tit} and let G {z III z II ~ E}. Then, for each t, BiF; t) is a point,
which for t 7'= 0, I is of modulus less than 1. Hence if E is sufficiently close to
(but smaller than) unity, F(t) n G(t) = 0 "It whereas this property fails for
the approximants. It is possible, however, to show that nonintersection is
ultimately preserved in general.

PROPOSITION. Let F(t) n G(t) = 0 "It. Then, for n sufficiently large,
RiF; t) n BiG; t) = 0 "It.

Proof Let E = inft inf{llf - g IIlfEF(t), g E G(t)}. Compactness and
continuity ensure that E is strictly positive. The assertion then holds for n
such that E/2 > max{H(Fn , Bn(Fn ; », H(G, B..(G; »}. I

We turn now to the behavior of approximants when juxtaposed with
mappings of the "background space" IRd. If M is a d x d matrix, we can
define a map taking IKe into IKe by K f--+ MK = {Mk IkE K}. The following
easy result is typical.

PROPOSITION. BiMF; t) = MBn(F; t).

In particular, Bernstein approximation commutes with projections.
Alternatively, let us consider a continuous one-parameter family of matrices
M t , °~ t ~ 1 (continuity can be assumed in any reasonable sense, e.g.,
in the Euclidean norm). Then F(t) = MtK, for a fixed K E IKe is an element of
e[lKe] (one might think, for instance, of a continuous rotation of a fixed
figure). As well as uniform convergence, we have the following.
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Proof As a consequence of the general inclusion (Ml + M2)K C
MlK + M2K (matrix addition on the left, set addition on the right), we have

Bn(Mt ; t)K = (to bjn(t) Mnn) Keto b;n(t) Mj/nK = Bn(MtK; t). I

Note incidentally that Bn(Mt ; )K also converges uniformly to MtK which
suggests further comparisons with the convergence of the Bernstein
approximants.

An area of particular interest is the behavior of geometric functionals under
Bernstein approximation. For instance, given any functional rp: IKe ~ IRl
which satisfies rp(exKl + ~K2) = exrp(Kl) + ~rp(K2)' ex, ~ ~ 0, we have the
obvious relation rp(Bn(F; t)) = Bn(rp 0 F; t). Examples are, for fixed p,
rp(K) = s(p, K), the extent of K in the direction p and rp(K) = s(p, K) +
s(-p, K), the width of K in the direction p. In the plane, rp(K) = per(K) =
perimeter of K is another example. Here a convenient parameterization takes
p = (cos e, sin e) so that the support function may be regarded as a function
of the angle e. Then per(K) = f~7T see, K) de (see, e.g., [14]) and

n J27T
per(BnCF; t)) = L bjn(t) see, F(jln)) de.

j~O 0

Nonlinear functionals naturally require individual attention. It may be
possible to invoke classical considerations, as in the following bound for the
volume of BnCF; t), which is a straightforward consequence of the Brunn
Minkowski inequality (see, for instance, [7]).

PROPOSITION. vol Bn(F; t) ~ [Bn«vol F)1/d; t)]d.

In the plane an explicit expression can be displayed for the area functional.
With sufficient smoothness of the support functions,

n n J27T
area Bn(F; t) = t L L bjnCt) bkn(t) see, F(jln)) . r(e, F(kln)) de,

i~O k=O 0

where r(8, K) = «02/082) + I) s(8, K) (see the discussion in [11] on mixed
areas).

6. NOTES

Section 1. The present study was motivated in part by earlier work of the
author and colleagues in related areas-in particular, approximation of plane
convex sets [6,9], random sets [3, 17], computational considerations [15],
and modeling of tumor growth [16].
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Section 2. The Hausdorff metric is evidently a distance of Lao type (in the
space of support functions). It would be of considerable interest to find an
appropriate L 2 formulation.

Section 3. Theorem 1 has many variants along traditional lines. For
instance, uniform convergence in a subinterval can be asserted under weaker
conditions. Moreover, pointwise convergence rates can be derived for each
of the component s(p, F(t)).

Theorem 2 suggests that linear methods may not be natural for approxi
mation in C[IK].

Section 4. The extended development in the text for families of functions
can perhaps be avoided by an appeal to the abstract machinery of Banach
lattices (see, for instance, [12, esp. Vol. 2]). We have not seen a clear way to do
this, and in any case the quantitative formulation given may be of particular
use. Although it is not explicitly given in the text, the following bound seems
best possible

H(TF, F) ~ wlp)[H(F(O») + 1] + y(F, T),

where

fL2 = sup II[T[(t - X)2 B)](x)11
x

and

y(F, T) = sup{H(TG, G) I G(x) - F(t), 0 ~ x ~ 1, t fixed}.

Condition (ii) of Theorem 3 has the equivalent (but apparently weaker)
formulation in the plane (d = 2):

sup{H(TnF, F) IF(t) = K, II K II = 1, K = a point,

line segment, or triangle} - O.

We indicate why this is so. Given any K, we can approximate it in the
Hausdorff metric arbitrarily well with a finite sum of the form

(H(K, K.) = E),

where q is a point, the Ll i are either line segments or triangles containing {O},
II Ll i II = 1 in each case, and (Xi > 0 (see, for instance, Yaglom and Boltyanskii
[19]). Then

H(TK, K) ~ H(TK, TK.) + H(TK. , K.) + H(K. , K).
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The last term equals E and the first is bounded above by E II TB II. As for the
second term, we have the bound

H(TK. ,Ke) ~ H(Tq, q) + L (XiH(TLJ i , LJ i)

~ H(Tq, q) + sup{H(TLJ, LJ) III LJ II = I} . L (Xi .

Now comparing perimeters of K and K. we have

per(Ke) = L (Xi per(LJ i ) ~ per(K) + 27TE.

Since 0 E LJ i and II LJ i II = 1, we have per(LJ i ) ;? 211 LJ i II = 2 (achieved when
LJ i looks like a unit vector) and so

As for the first term, 0 E K - q so that 11 q 11 ~ II KII and hence for II q 11 > 0,
we have

H(Tq, q) = 11 q II H(Tqlll q 11, qlll q 10
~ II K II sup{H(Tij, ij) III ij II = I},

(the trivial case II q II = 0 is, of course, included in the final inequality).
Passing to the limit as E \;. 0, we then have

H(TK, K) ~ [1 + 7T] II KII
. sup{H(TLJ,..1) III LJ II = 1, LJ = point, line segment, or triangle}.
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